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The quantum field theory of fermion mixing
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Abstract. Blasone and Vitiello showed that for two or three flavours the mass and flavour vacua
for fermion mixing define inequivalent representations of the anticommutation relations. This
paper presents a short proof that this holds for any number of flavours and momentum-dependent
mixing, and also extends the Blasone-Vitiello formulae for the oscillations.

It has been known for some time that otherwise identical fermions with different masses give
rise to oscillations [1], and recent experiments have provided evidence in support of this in
the case of solar neutrinos [4—6]. Blasone and Vitiello recently pointed out that, far from
being approximately equal (as often assumed in theoretical treatments), the flavour and Dirac
vacua for the Pontecorvo theory of fermion mixing generate inequivalent representations of the
fermionic anticommutation relations [2, 3]. This paper applies standard mathematical criteria
[7,9-11]to give a short proof of a generalization of their result to arbitrary numbers of flavours,
with a mixing matrix which can be momentum dependent. (Although there is currently no
evidence for more than three generations of leptons, the proof still has the advantage that the
cases of two and three flavours are treated in a unified way.)

The fermionic anticommutation relations (CAR) take the form

[a®)*, a(m]+ = (&, n)

where£ andy lie in the space of wavefunctions orR® with values in the producy of
the Dirac spinors and a-dimensional spac®& describing the various flavour states. The
Pontecorvo mixing operator is given by a unitary operdtan V. The Dirac vacuunf2 € H
satisfies the condition

a(P:&)Q = 0= a(P_£)*Q

whereP, and P_ are the projections onto the positive and negative energy states, respectively.
The vectors ir{ can be regarded as initial data for a Dirac equation of the form

ihd,y = Hpyr
where the Dirac—Hamiltonian has the form
Hp=cla-P®1+BQ Mc)
with a = (a1, a2, @3) andg satisfying the Clifford algebra relations
a;jfp+Baj=0 ﬂ2=1 ajo +ogaj = 208k j, k=123

0305-4470/00/071369+05$30.00 © 2000 IOP Publishing Ltd 1369



1370 K C Hannabuss ahD C Latimer

andM is a positive operator ovi, with eigenvalues the masses, m., . .., my ofthe variously
flavoured particles. (We shall generally omit the tensor products and simply gwitdéor
B® M, etc.)

We readily check that
H = (M?c* + 2| PP).
Defining
P = 3(1+ Hp(M?c* + 2| P|?)~1?)

where(M2c* + ¢2| P|%)~Y2 is the inverse of the positive operator square roa/gf we now
readily check thaP? = P, and thatHp Py = £(M?c* + ¢?|P|>)Y2P,, so thatP,. are the
positive and negative energy projections.

By Fourier transforming the wavefunctions into the momentum space representation,
decomposes into a direct integral of spaggsone for each momentupe R3, on which the
positive and negative energy projections are

Py =11+ (ca-p+BMA) (Mt +2pH)Y3).

The question of equivalence of the Dirac and flavour vacua can be reduced to the question
of whether the Pontecorvo operatbrcan be implemented in the representation of the CAR
generated by, and this occurs if and only if the operaté% 7T P_ is a Hilbert—Schmidt
operator. In general, as we shall now show, it is not. This is easily seen by notirg, that
acts orH,, just as a multiplication by a matrik (p). (This is still true wherf” depends on the
momentum, and we shall allow for this possibility in what follows.) Similafy,7*P.T P_
is multiplication by F (p)* F (p) and so can be represented as an integral operator with kernel
k(p,q) = F(p)*F(p)d(p — q). The trace t(P_T*P.T P_) is the integral of t(k(p, p))
and so clearly diverges unless tF (p)* F (p)) vanishes identically.

With respect to a basis of eigenvectors #61in V, M is represented by a diagonal matrix
and7 has matrix elements;;, say. The contribution to 4(P_T*P.T P_) coming fromH,,
is then found to be

N
tv(F@)'F(P) =5 ) o[+ (ca-p+pm;c)E;H (L= (ca- p+ pmc®) E D] Tl
jok=1

whereE; = (mfc4 + c2|p|»)Y2. Using the fact that the matrices have a trace of zero, and
that the sum over the spinor degrees of freedom cancels the fac}ot‘rtiisé can be written as

N
> 1= (Pl + mjmc®)(E;E) I Tl
J.k=1

For brevity we write

c2|p|? +mjmk04

Sy =
ik EEy

so that

N
try(F(p) F(P) = Y [1— S| Tl

jk=1

and, sinceS;; = 1, the sum could be taken ovge k.
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We now note that
(E;E)? = (Plpl? + mjmic)? = (Pl + m2c(PIpl* + mic®) — (Pl +mjmic*)?
= (m; — my)*c®|pl?
so that

Log, 1Sk my—mp*cOipl
KT 1480 A+Sj0(E E)?

from which it follows that the terms in the sum are all non-negative and,8@'tp)* F (p))
vanishes if and only if each term vanishes, which is equivalent to

(m; —m)?|Tj|> =0

forall j andk. We conclude thaf is implementable if and only i = 0 whenevem ; # my,
i.e. there is no mixing of different masses.
By differentiating we can readily show that the maximum value ef&f , Which occurs

whenp? = m jmc?, is

2
m; — niy
<mj +my ) '
This gives(4m jmy)/(m; +mi)* < 5 < 1, and sinces ) is positive,

2, /mjmy
- X
mj +my

These inequalities can also be written as

W

0<1=5; mj+my
J

We shall now consider oscillations for fermions of a fixed energy, and we start by recalling
the formulae for correlation functions. Létbe the second quantization of a single-particle
operatorA (which satisfies 4, a(¢)*] = a(A¢)* for any single-particle statg, and also
AQ = 0). Then, using the anticommutation relations we have

(a(@)*Q2, Aa(¢)*Q) = (a(P+¢)*Q, Aa(P:¢)*R) ~
= (Q, a(P+p)(a(AP:p)" +a(Pid)*A)Q)
= <P+¢, AP+¢) = <¢s P+AP+¢>-

(Similarly, |a(¢)*Q?> = (¢, P+¢).) Generalizing this to combinations of vectaps we
consider expectations of the form(iB P. A P.)/ tr3 (B P;) for positive operator8. Now the
number operator for particles of flavauis the second quantization of the projection operator
P onto the subspace of flavourin V (or, strictly speaking, of & P.). Taking B = P*
we see that the expected number of particles of flaxoir the state obtained by applying
A-flavour creation operators to the Dirac vacuum g ®* P, P* P,)/ try,(P* P,). This can be
evaluated in a similar way to our earlier calculations (apart from a sign change in one of the
projections).

The numerator is thus found to be

N
;1(1 +S50) Pl PG
=
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Moreover, by the definition of", we see that, if the flavour states are non-degenerate, the
projectionP?* is the conjugate of projection onto tiéh basis vector and has components

P jkk =TT = T, T
giving

N —_— —
Z A+S;T 5Tk T i Ty
jk=1

By the unitarity of7 we have) j T,(j T;; = é«x., SO that the numerator can be rewritten as

N
25,5, — Z A= S; )T T T i Ty
jk=1

The denominator is just
N N
try(P*Py) =2 Pl=2) |T;;[>=2
j=1 j=1

so that whenr = X the expectation value is
1- 3> (A= S0l P Tl
Jj#k
The second term represents the quantum field-theoretic correction. Our previous
calculation shows that the correction to thek term is largest whemp? = m;m;c?, and
provides bounds. We note that in the two-dimensional case considered in detail by Blasone
and Vitiello the numerator of the correction collapses to a single term.

To incorporate the time development we note that in the Heisenberg pietuegolves
intimer to

PK(t) — eitHl)/EPK efitHu/E
with matrix components
(PE(0) ji = € E7EM(PY) .

When this is substituted in place 6P*) ;; the denominator is unchanged, but we obtain for
the numerator

N
D@+ S € ETEVNT 2 T 2.
Jj.k=1

Exploiting the symmetry iry andk this becomes

N
D (A +S) cost (B — E)/R)|Tej | Tk .
jk=1

This expression differs from that at time= 0 by

N
2" sinf(t(Ex — E)/2D](L+ 80| T P T
jok=1

exhibiting the oscillations.
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