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Abstract. Blasone and Vitiello showed that for two or three flavours the mass and flavour vacua
for fermion mixing define inequivalent representations of the anticommutation relations. This
paper presents a short proof that this holds for any number of flavours and momentum-dependent
mixing, and also extends the Blasone–Vitiello formulae for the oscillations.

It has been known for some time that otherwise identical fermions with different masses give
rise to oscillations [1], and recent experiments have provided evidence in support of this in
the case of solar neutrinos [4–6]. Blasone and Vitiello recently pointed out that, far from
being approximately equal (as often assumed in theoretical treatments), the flavour and Dirac
vacua for the Pontecorvo theory of fermion mixing generate inequivalent representations of the
fermionic anticommutation relations [2, 3]. This paper applies standard mathematical criteria
[7, 9–11] to give a short proof of a generalization of their result to arbitrary numbers of flavours,
with a mixing matrix which can be momentum dependent. (Although there is currently no
evidence for more than three generations of leptons, the proof still has the advantage that the
cases of two and three flavours are treated in a unified way.)

The fermionic anticommutation relations (CAR) take the form

[a(ξ)∗, a(η)]+ = 〈ξ, η〉
whereξ andη lie in the spaceH of wavefunctions onR3 with values in the productV of
the Dirac spinors and anN -dimensional spaceV describing the various flavour states. The
Pontecorvo mixing operator is given by a unitary operatorT onV . The Dirac vacuum� ∈ H
satisfies the condition

a(P+ξ)� = 0= a(P−ξ)∗�
whereP+ andP− are the projections onto the positive and negative energy states, respectively.
The vectors inH can be regarded as initial data for a Dirac equation of the form

ih̄∂tψ = HDψ
where the Dirac–Hamiltonian has the form

HD = c(α · P ⊗ 1 +β ⊗Mc)
with α = (α1, α2, α3) andβ satisfying the Clifford algebra relations

αjβ + βαj = 0 β2 = 1 αjαk + αkαj = 2δjk j, k = 1, 2, 3
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andM is a positive operator onV , with eigenvalues the massesm1,m2, . . . , mN of the variously
flavoured particles. (We shall generally omit the tensor products and simply writeβM for
β ⊗M, etc.)

We readily check that

H 2
D =

(
M2c4 + c2|P |2).

Defining

P± = 1
2

(
1±HD(M2c4 + c2|P |2)−1/2

)
where(M2c4 + c2|P |2)−1/2 is the inverse of the positive operator square root ofH 2

D, we now
readily check thatP 2

± = P± and thatHDP± = ±(M2c4 + c2|P |2)1/2P±, so thatP± are the
positive and negative energy projections.

By Fourier transforming the wavefunctions into the momentum space representation,H
decomposes into a direct integral of spacesHp, one for each momentump ∈ R3, on which the
positive and negative energy projections are

P± = 1
2(1± (cα · p + βMc2)(M2c4 + c2|p|2)−1/2).

The question of equivalence of the Dirac and flavour vacua can be reduced to the question
of whether the Pontecorvo operatorT can be implemented in the representation of the CAR
generated by�, and this occurs if and only if the operatorP+T P− is a Hilbert–Schmidt
operator. In general, as we shall now show, it is not. This is easily seen by noting thatP+T P−
acts onHp just as a multiplication by a matrixF(p). (This is still true whenT depends on the
momentum, and we shall allow for this possibility in what follows.) Similarly,P−T ∗P+T P−
is multiplication byF(p)∗F(p) and so can be represented as an integral operator with kernel
k(p, q) = F(p)∗F(p)δ(p − q). The trace trH(P−T ∗P+T P−) is the integral of trV(k(p,p))
and so clearly diverges unless trV(F (p)

∗F(p)) vanishes identically.
With respect to a basis of eigenvectors forM in V ,M is represented by a diagonal matrix

andT has matrix elementsTjk, say. The contribution to trH(P−T ∗P+T P−) coming fromHp
is then found to be

trV(F (p)
∗F(p)) = 1

4

N∑
j,k=1

trV [(1 + (cα · p + βmjc
2)E−1

j )(1− (cα · p + βmkc
2)E−1

k )]|Tjk|2

whereEj = (m2
j c

4 + c2|p|2)1/2. Using the fact that the matricesαj have a trace of zero, and

that the sum over the spinor degrees of freedom cancels the factor of1
4, this can be written as

N∑
j,k=1

[1− (c2|p|2 +mjmkc
4)(EjEk)

−1]|Tjk|2.

For brevity we write

Sjk = c2|p|2 +mjmkc4

EjEk

so that

trV(F (p)
∗F(p)) =

N∑
j,k=1

[1− Sjk]|Tjk|2

and, sinceSjj = 1, the sum could be taken overj 6= k.
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We now note that

(EjEk)
2 − (c2|p|2 +mjmkc

4)2 = (c2|p|2 +m2
j c

4)(c2|p|2 +m2
kc

4)− (c2|p|2 +mjmkc
4)2

= (mj −mk)2c6|p|2
so that

1− Sjk =
1− S2

jk

1 +Sjk
= (mj −mk)2c6|p|2
(1 +Sjk)(EjEk)2

from which it follows that the terms in the sum are all non-negative and so trV(F (p)
∗F(p))

vanishes if and only if each term vanishes, which is equivalent to

(mj −mk)2|Tjk|2 = 0

for all j andk. We conclude thatT is implementable if and only ifTjk = 0 whenevermj 6= mk,
i.e. there is no mixing of different masses.

By differentiating we can readily show that the maximum value of 1− S2
jk, which occurs

whenp2 = mjmkc2, is(
mj −mk
mj +mk

)2

.

This gives(4mjmk)/(mj +mk)2 6 S2
jk 6 1, and sinceSjk is positive,

2
√
mjmk

mj +mk
6 Sjk 6 1.

These inequalities can also be written as

06 1− Sjk 6
(
√
mj −√mk)2
mj +mk

.

We shall now consider oscillations for fermions of a fixed energy, and we start by recalling
the formulae for correlation functions. Let̃A be the second quantization of a single-particle
operatorA (which satisfies [̃A, a(φ)∗] = a(Aφ)∗ for any single-particle stateφ, and also
Ã� = 0). Then, using the anticommutation relations we have

〈a(φ)∗�, Ãa(φ)∗�〉 = 〈a(P+φ)
∗�, Ãa(P+φ)

∗�〉
= 〈�, a(P+φ)(a(AP+φ)

∗ + a(P+φ)
∗Ã)�〉

= 〈P+φ,AP+φ〉 = 〈φ, P+AP+φ〉.
(Similarly, ‖a(φ)∗�‖2 = 〈φ, P+φ〉.) Generalizing this to combinations of vectorsφ, we
consider expectations of the form trH(BP+AP+)/ trH(BP+) for positive operatorsB. Now the
number operator for particles of flavourκ is the second quantization of the projection operator
P κ onto the subspace of flavourκ in V (or, strictly speaking, of 1⊗ Pκ ). TakingB = Pλ

we see that the expected number of particles of flavourκ in the state obtained by applying
λ-flavour creation operators to the Dirac vacuum is trH(P

λP+P
κP+)/ trH(P λP+). This can be

evaluated in a similar way to our earlier calculations (apart from a sign change in one of the
projections).

The numerator is thus found to be

N∑
j,k=1

(1 +Sjk)P
λ
jkP

κ
kj .
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Moreover, by the definition ofT , we see that, if the flavour states are non-degenerate, the
projectionPλ is the conjugate of projection onto theλth basis vector and has components

Pλjk = T ∗jλTλk = T λjTλk
giving

N∑
j,k=1

(1 +Sjk)T λjTλkT κkTκj .

By the unitarity ofT we have
∑

j T κjTλj = δκλ, so that the numerator can be rewritten as

2δκλ −
N∑

j,k=1

(1− Sjk)T λjTλkT κkTκj .

The denominator is just

trH(P
λP+) = 2

N∑
j=1

Pλjj = 2
N∑
j=1

|Tλj |2 = 2

so that whenκ = λ the expectation value is

1− 1
2

∑
j 6=k
(1− Sjk)|Tλj |2|Tλk|2.

The second term represents the quantum field-theoretic correction. Our previous
calculation shows that the correction to thej, k term is largest whenp2 = mjmkc

2, and
provides bounds. We note that in the two-dimensional case considered in detail by Blasone
and Vitiello the numerator of the correction collapses to a single term.

To incorporate the time development we note that in the Heisenberg pictureP κ evolves
in time t to

P κ(t) = eitHD/h̄P κ e−itHD/h̄

with matrix components

(P κ(t))jk = eit (Ej−Ek)/h̄(P κ)jk.

When this is substituted in place of(P κ)jk the denominator is unchanged, but we obtain for
the numerator

N∑
j,k=1

(1 +Sjk) eit (Ek−Ej )/h̄|Tκj |2|Tκk|2.

Exploiting the symmetry inj andk this becomes

N∑
j,k=1

(1 +Sjk) cos(t (Ek − Ej)/h̄)|Tκj |2|Tκk|2.

This expression differs from that at timet = 0 by

2
N∑

j,k=1

sin2(t (Ek − Ej)/2h̄)](1 +Sjk)|Tκj |2|Tκk|2

exhibiting the oscillations.
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